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Glyphosate

An herbicide dominating the corn herbicide market in the U.S., China,
and across the world, also known as Roundup.
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Glyphosate debate: Buttefly population reduction?

Evidence is divided on whether glyphosate contributes to monarch
butterfly population reduction; indirectly through the loss of
milkweed, on which monarchs lay their eggs and its larvae feed.

Figure: Adapted from Fig. 1., Boyle et al.(2019)
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Glyphosate debate: Carcinogenic?

In 2015, WHO IARC (International Agency for Research on Cancer)
has classified glyphosate as “probable carcinogenic to humans”; yet
conclusion remains undetermined.
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Glyphosate restriction policies around the world
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Is a glyphosate-restricting policy preferable?

Glyphosate is ubiquitous in US corn production
→ unintended consequences?

Research question:Is a glyphosate-restricting policy preferable from a
social welfare standpoint, given the substitution possibility?
→ economic, as well as human health and the environment

Figure: Chemical share, calculated as individual chemical use (kg/ha) divided by
total herbicide chemical use (kg/ha). Adapted from Fig. 1. of this paper.

7 / 39



Is a glyphosate-restricting policy preferable?

Glyphosate is ubiquitous in US corn production
→ unintended consequences?

Research question:Is a glyphosate-restricting policy preferable from a
social welfare standpoint, given the substitution possibility?
→ economic, as well as human health and the environment

Figure: Chemical share, calculated as individual chemical use (kg/ha) divided by
total herbicide chemical use (kg/ha). Adapted from Fig. 1. of this paper.

7 / 39



Is a glyphosate-restricting policy preferable?

Glyphosate is ubiquitous in US corn production
→ unintended consequences?

Research question:Is a glyphosate-restricting policy preferable from a
social welfare standpoint, given the substitution possibility?
→ economic, as well as human health and the environment

Figure: Chemical share, calculated as individual chemical use (kg/ha) divided by
total herbicide chemical use (kg/ha). Adapted from Fig. 1. of this paper.

7 / 39



Is a glyphosate-restricting policy preferable?

Glyphosate is ubiquitous in US corn production
→ unintended consequences?

Research question:Is a glyphosate-restricting policy preferable from a
social welfare standpoint, given the substitution possibility?
→ economic, as well as human health and the environment

Figure: Chemical share, calculated as individual chemical use (kg/ha) divided by
total herbicide chemical use (kg/ha). Adapted from Fig. 1. of this paper.

8 / 39



Table of Contents

1 Introduction

2 Modeling Approach

3 Economic side: herbicide demand estimation

4 Human health and environmental side: damage prices

5 Welfare analysis: equilibrium displacement model

9 / 39



Interdisciplinary Modeling Approach

Figure: Adapted from Fig.2. of this paper.
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What drives herbicide substitution?

Non-price drivers of substitution between glyphosate and it alternative
herbicides, namely ”the composite”: Glyphosate-tolerant (GT)
corn adoption, tillage, and weed resistance (Figure adapted from
Fig. 1. of this paper).
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Empirical model specification

Derived from the underlying Translog cost function, the herbicide demand
equation is specified as:

s = b0 + b1lnP + b2Resist + b3GT + b4Till + Ψ + ε (1)

Notations:

s: herbicide cost share of glyphosate, varies by farm and year;

lnP : logarithm of price index ratio of glyphosate to the composite;

The AES will be recovered from b1 estimate.

Resist: weed resistance to glyphosate relative to the composite;

GT : GT adoption rate;

Till : conventional tillage rate;

Ψ: year dummies, state dummies, and state-specific time trends.
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Three econometric issues

Issue 1: Fractional dependent variable, bounded between 0 and 1:
fractional response approach

E (s|•) = Φ(b0 + b1lnP + b2Resist + b3GT + b4Till + Ψ) (2)

Figure: Visualization of fractional response model.
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Three econometric issues, continue

Issue 2 : farm-level unobserved heterogeneity for unbalanced panels:
Correlated Random Effects with unbalanced panels (Wooldridge 2019)

Issue 3 : GT and Till are likely endogenous: Control functions in a
fractional response model (Papke and Wooldridge, 2008)

Extending eq. (2) and setting up the estimation equation as
follows:

E (sit |zit , y1,it , ci , uit) = Φ(z1,itη + µ1y1,it + ci + uit ) (3)

zit : exo. variables, consisting of included exo. variables z1 and excluded
exo. variables z2,it ; y1,it : endo. variables (GT and Till)
ci : time-invariant farm heterogeneity, modeled to depend on not only

all exogenous variables but also time period selection denoted by λir to
account for unbalancedness.
uit : time-varying omitted factor correlated with y1,it
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Estimation procedure

After a few steps of derivation, eq. (3) becomes

E (sit |zit , y1,it , v1,it , λir ) =

Φ(
z1,it η̃ + µ̃1y1,it + ρ̃1v1,it + ΣT

r=1θ̃rλir + ΣT
r=1ζ̃rλir z̄i

exp(ΣT
r=2λir φ̃r )0.5

)
(4)

where

y1,it = τ1 + zitδ1 + ΣT
r=2θ̃rλir + ΣT

r=2ζ̃rλir z̄i + v1,it (5)

Hence a two-step estimation procedure is straightforward:

step 1: obtain the OLS residuals v̂1,it from eq. (5)

step 2: estimate he fractional probit model in eq. (4) where v̂1,it
enters the regression.

Standard errors are bootstrapped to adjust for the first-stage
estimation.
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Econometric model schematic

IVs for GT : pgt, GT seed price; Bt, Bt seed adoption rate.

IVs for Till : pfuel , diesel fuel price; hel8, soil erodibility.

Figure: Adapted from Fig.S3 of the SI Appendix.
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Data and variables

Survey data on weed control practices

2010-2016 (1998-2016)

collected annually by Gfk Kynetec, a market research company

annual average of more than 4000 farmer observations

variables are s, Till , lnP, pgt, Bt .

Complementary data sources

Resist : the International Survey of Herbicide Resistant Weeds
(ISHRW)

hel8 : the National Reserve Inventory (NRI); equals 1 if highly
erodible, 0 otherwise

pfuel : the U.S. Energy Information Administration
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Key results: AES

Estimates for the coefficient of lnP, i.e., b1

b̂1=0.151***(std. err.=2.76)

Average partial effect ˆAPE=0.058***(std. err.=2.80)

Its economic meanings are translated through elasticities

glyphosate own-price elasticity=-0.371

glyphosate cross-price elasticity=0.369

Allen-Uzawa elasticity of substitution (AES)=0.739 >0, so glyphosate and
the composite are substitutes on average.
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Recall the overall modeling approach
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Monetizing toxicity into damage prices

Combine the Environmental Impact Quotient (EIQ) approach (Kovach et
al. 1992) and the Pesticide Environmental Accounting Framework
(PEA)(Leach and Mumform 2008).
Step 1: EIQ - Toxicity evaluation

calculate scores for farm worker, consumer and ecological effects

the higher the score, the more adverse health & environmental effects.

Step 2: PEA - From EIQ to monetary externality (damage prices)

a type of benefit transfer - apply EIQ of an individual pesticide as a
”weight” to the average externality cost for general pesticides in the
US.

the damage price (in dollar/gallon) is then obtained by summing over
category-specific external costs and multiplying by the average
kilogram active ingredient per gallon pesticide product

damage price: the monetary value of externality per gallon of a
pesticide product.
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Simulating for alternative glyphosate toxicity scenarios

To capture the uncertainties around glyphosate toxicity and its HH-E
impacts: carcinogenic and monarch butterfly effects are the most
debated - thus four scenarios.

Simulate through adjusting two key parameters in EIQ evaluation
equation:

C: long-term health effect (farm worker & consumer effect)
B: beneficial arthropod toxicity (beneficial insect effect)
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Key results: damage prices

Damage prices for the composite and glyphosate under four scenarios
(status-quo + 3 extreme scenarios)

confirms the overall low environmental toxicity for glyphosate

highlights glyphosate carcinogenicity as a primary source of
uncertainty in the glyphosate policy debate
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EDM Overview

An equilibrium displacement model (EDM) is a system of supply
and demand equations linking market variables of
corn and herbicide market , parameters, and exogenous shocks.

Market variables: price and quantity of corn, glyphosate, and
alternative herbicides - 6 variables

Key parameters: AES, damage prices

Policy shock : glyphosate tax (10%-50%)

Outcome:

percentage change in market variables at the post-shock equilibrium

welfare changes (HH-E welfare; market economic welfare=consumer
welfare+producer welfare+tax transfer)
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key results: equilibrium changes

Three panels for robustness: examine across an exhaustive range of
herbicide supply elasticities , i.e., assuming to be combinations of

0.5, 1.0, or 1.5 .

Figure: Percentage changes in market variables at 10% glyphosate tax.
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key results: equilibrium changes

a glyphosate tax will decrease glyphosate use but increase its
alternative herbicide use (substitution effect overrides expansion
effect) at the same time.

How do the two counter-forces translate into welfare effects?

Figure: Percentage changes in market variables at 10% glyphosate tax.
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Key results: welfare effects assuming cancer & butterfly
effects

Environmental gain is outweighed by economic loss, even when
assuming the most adverse human health and environmental effects
of glyphosate.

A glyphosate tax will result in net social welfare loss.

This finding is robust to a wide range of tax rates and reasonable
combinations of herbicide supply elasticities.
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Summary

The first analysis that rigorously and comprehensively addresses the
effects of a glyphosate use restriction policy on food producers,
consumers, human health, and the environment.

Farmers who previously used glyphosate on corn fields might turn to
alternative herbicides, leading to equilibrium changes.

A glyphosate tax is likely to decrease overall social welfare, because
the economic loss from restricted weed control outweighs any
decreased risks to human health and the environment from switching
to alternative herbicides.

This conclusion holds despite the uncertainties around glyphosate’s
human health and environmental impacts.
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A glyphosate tax is likely to decrease overall social welfare, because
the economic loss from restricted weed control outweighs any
decreased risks to human health and the environment from switching
to alternative herbicides.

This conclusion holds despite the uncertainties around glyphosate’s
human health and environmental impacts.
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Let’s end where we begin!
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Thank you!

Q & A
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GT trait stacking

Figure: Adapted from Fig. S2 of the SI Appendix.
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Step 1: Model formulation

One-output (corn), Two-input (glyphosate and the composite herbicide)
model (assuming the prices of other inputs are constant in response to the
tax change).

(a) output demand: Q = f (M); Q, corn quantity; M, corn price

(b) output production: Q = Q(X1,X2); X1 (X2), glyphosate (the
composite) herbicide quantity

(c) input demand for glyphosate: P1 = MQ1(X1,X2); P1, glyphosate
herbicide price

(d) input demand for the composite: P1 = MQ1(X1,X2); P2, the
composite herbicide price

(e) input supply for glyphosate: X1 = g1(P1)

(f) input supply for the composite: X1 = g1(P1)
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Step 2: differentiation and derivation

Totally differentiating and converting to elasticities, and adding the
exogenous shock of a glyphosate tax τ . Let EX denote percentage
changes in X .

(a’) EQ = ζEM; ζ, the price elasticity of consumer demand for corn

(b’) EQ = κ1EX1 + κ2EX2; κm, cost share of input m, and
κm = PmXm/(Total corn production cost)

(c’) EP1 = EM − (κ2/ AES )EX1 + (κ2/ AES )EX2

(d’) EP2 = EM + (κ1/ AES )EX1 − (κ1/ AES )EX2

(e’) EX1 = ε1(EP1 − τ )

(f’) EX2 = ε2EP2
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Step 3: solutions

Solving the system gives the percentage change of the market variables as
expressions of parameters.

Notes: Signs given assume that ζ <0, ε1 >0, and ε2 >0. D abbreviates
D = AES(ζ + κ1ε1 + κ2ε2)− ζ(κ2ε1 + κ1ε2) + ε1ε2(κ1 + κ2)2 > 0.
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Step 3: solutions, continued

Subsequently, welfare changes from the shock of τ can be calculated using
the following table:

Notes:The zeros in the subscripts denote the baseline values of these
variables.
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Step 4: calibration

Need to calibrate the parameters and baseline quantities % prices.
Combines various sources of information, including

previous literatures (for corn price elasticity)

AgroTrak data & corn budget estimates (for herbicide cost share in
total corn production cost; and baseline herbicide quantities & prices)

USDA National Agricultural Statistics Service (for baseline corn
quantity & price)
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